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Abstract

The World Wide Web (WWW) has arguably been the most popular application

of the Internet for years. Over a period of time, it has developed over the principles of

host-centric IP internet. However, the limitations of today’s host-centric IP internet

have motivated many future internet architectures that are centered around alternate

principals such as content and services.

In this thesis, we study the WWW and propose features needed by such clean

slate future internet architectures that can benefit the WWW. The features that

we propose are then implemented on eXpressive Internet Architecture (XIA) - a

candidate future internet architecture.

Most of the clean slate architectures proposed so far revolve around an alter-

nate principal giving rise to networking infrastructural styles such as content-centric-

networking or service-oriented networking. XIA argues that elevating one principal

above others limits the ability to communicate with the other principals. Thus, XIA

inherently supports co-existence of multiple communication principals.

The WWW relies on a reliable transport layer for content delivery. We see how

these coexisting principals cooperate to provide a new reliable content delivery archi-

tecture that offers content caching and reliable content transport as services. Despite

being offered as services, we still maintain primary features offered by a content cen-

tric network such as in-network caching and content routing.

We define a new principal type that allows fetching content by human readable

names rather than by cryptographically secure identifiers. Although human readable

names are more convenient for the world wide web, they are more vulnerable to se-

curity threats than the cryptographically secure identifiers. We address authenticity,
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integrity issues raised by human readable names. We then define a security model

that allows endpoints as well as in-network devices to perform integrity, authenticity

checks in constant time.

To complete the story, we avoid the need of name lookup by defining URL scheme

that directly address es the content. Based on these URL formats, the human read-

able identifiers and the new content delivery system proposed, we model the World

Wide Web over XIA.
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1

World Wide Web

The World Wide Web is arguably the most important application of the Internet.

The World Wide Web is an information space that allows exchanging information

objects called web resources between hosts. It was invented by English scientist Tim

Berners-Lee in 1989.

The web is so popular that the term is often used interchangeably with the In-

ternet itself. However, these two are not the same. The Internet is a giant network

of interconnected computers identified by IP address. Whereas, the web is a collec-

tion of web resources such as documents, videos, images that these interconnected

computers can network. Essentially, the web runs on top of the Internet.

In this chapter we will take a closer look at the important components of the

web.

1.1 Universal Resource Identifiers

The web resources are uniquely identified by something called as Universal Resource

Identifiers or URIs. URI is a string of characters that can identify a web resource

uniquely. This unique identification provides the network entities a way to identify
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and therefore request as well as serve a resource. RFC 2396 formally defined the for-

mat of URI. The definition was later refined by RFC 3986. The simplified definition

of the URI is as follows.

URI = scheme : hierarchical-part [ ? query ] [ # fragment ]

hierarchical-part = // authority path

/ path

• Scheme: Examples of popular schemes are HTTP, FTP, mailto etc.

• Hierarchical Part: Location of a web resource within some logical hierarchy.

Often, this part is formed by combining the host (a registered name or an IPv4

address) and hierarchical path (similar to UNIX file system paths).

• Query: Traditionally consists of key-value pairs.

• Fragment: A character string that identifies a fragment in the resource. For

example, a section in an article.

The example of a URI given in RFC 3986 is as follows.

foo://example.com:8042/over/there?name=ferret#nose

\_/ \______________/\_________/ \_________/ \__/

| | | | |

scheme authority path query fragment

URL (Universal Resource Locator) is the most commonly used form of URI in the

World Wide Web. In addition to uniquely identifying a web resource, URL also

provides a way to locate the resource. Essentially, URL identifies a web resource by

its network location.
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1.2 Hypertext Transfer Protocol

The primary method used for publishing and retrieving these web resources is Hy-

pertext Transfer Protocol (HTTP). Although HTTP is one of many Internet com-

munication protocols, the web resources are usually accessed via HTTP. HTTP is a

request-response type of protocol. The HTTP clients or web clients request resources

by sending a HTTP GET request to entities serving these resources. The entities that

serve the web resources are called HTTP servers or Web Servers.

1.2.1 HTTP Session

HTTP Session is a sequence of request-response transactions. The HTTP client

initiates a reliable transport session (a TCP session) with a HTTP server listening

on a particular predefined port. The port number used by HTTP servers is usually

80. Once the session has been established, the client then sends a HTTP request to

the server. Server responds back with a status line such as HTTP 200 OK and the

message which contains the actual object.

1.2.2 HTTP Metadata

HTTP requests and responses are coupled with metadata that describe these requests

and responses. The HTTP metadata describes one of the following:

• HTTP Session - Describes the current HTTP session. For example, metadata

“connection” describes if the web server should terminate the current HTTP

session after this request / response or not.

• The Web Server - Describes the web server itself. For example, the metadata

“Server” gives the name of the server.

• The Web Client - Describes the web client. For example. the metadata “User-

Agent” is the user software that is requesting the resource
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• Web Resource - Describes the web resource being served. For example, “Content-

Length” is the length of the resource being served.

• HTTP Services: Caching, Content Negotiation - HTTP supports various ser-

vices such caching at a web proxy or negotiation the form of the content. Some

of the metadata fields describe the attributes of these services.

1.2.3 HTTP Methods

HTTP supports different request types. The following are the different types of meth-

ods that HTTP supports: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT.

The HTTP method that is responsible for fetching a web resource is GET. The HTTP

method HEAD is used when the web client is only interested in fetching the metadata

associated with the web resource and does not worry about the actual web resource.

1.3 Web Resources

The resources in the web can be categorized in the following three types.

• Static Resources: Static resources are the web resources do not change their

form over a long time or based on the metadata presented in the request. An

example of a static resource is a static image. A peculiar characteristic of

a static resource is that the URL often points to a file name. For example,

the URL http://upload.wikimedia.org/wikimedia/google.jpg points to

a JPEG file.

• Dynamic Resources: A Web resource that is generated upon the request from

a web client is called a Dynamic Resource. Personalized Facebook homepage

is an example of a dynamic resource.

• Multiform Resources: Multiform resources are midway between static and dy-

namic resources. A multiform web resource exists in multiple different forms.
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Based on the context presented by the requester, it changes its form. A web-

page that changes its form based on the UserAgent is an example of multiform

resource. The CNN homepage http://www.cnn.com is another such example.

The CNN homepage changes its form as and when news arrive. But the URL

that is used for retrieving the resource is still the same.

1.4 Conclusion

In this chapter, we studied the background the World Wide Web that is relevant

to the contribution of the thesis. The following chapter talks about future of In-

ternet research and a candidate future Internet architecture - eXpressive Internet

Architectire (XIA) in which we implement our ideas.
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2

eXpressive Internet Architecture

The most common theme observed in the future Internet research is to move away

from the host centric Internet. Computers communicating to one another was a

cornerstone of the time when the Internet was born. Therefore, the IPv4 network

on which the Internet is based addressed hosts in the network in order to establish

communication between them. Thus, the Internet as we see today has evolved on

the host based paradigm.

But, for the Internet users today it does not matter who serves the information.

Users care about what information they receive. This shift in Internet usage has

given rise to a new approach to evolve the Internet to a network infrastructure in

which focal point is the content rather than hosts. This approach is generally referred

to as Information Centric Networking. Figure 2.1 shows an illustration of Internet

usage in an information-centric Internet vs today’s host-centric Internet compared.

An example of a proposed Information centric networking architecture is Named

Data Networking(NDN).
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Figure 2.1: Host Centric Internet vs Information Centric Internet

2.1 eXpressive Internet Architecture (XIA)

eXpressive Internet Architecture is a candidate future Internet architecture that

argues against elevating one particular communication principal type over others. A

principal is a communication entity such as a host, a domain, a service or a specific

content piece. If the network primarily supports communication with one particular

principal type then communication with the other principal type inherently becomes

difficult. We see in today’s host-centric Internet that all the content requests first

need to identify the host who is capable of serving the content request. Similarly,

if we moved to an Information Centric Internet, it is not obvious how can we make
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hosts communicate with each other. XIA, thus, supports coexistence of multiple

principal types.

Three key features of XIA are as follows:

• Multiple Principal Types

• Fallbacks

• Intrinsic Security

Let’s go over these features one by one in order to understand XIA better.

2.1.1 Multiple Principal Types

As seen above, XIA supports coexistence of multiple communication principal types.

The communication principals that XIA supports are hosts, services, administrative

domains and content. These principals are identified by unique eXpressive identifiers

called as XIDs. Corresponding to the four principal types mentioned above, their

XIDs are referred to as HIDs, SIDs, ADs and CIDs.

2.1.2 Intrinsic Security

XIA’s intrinsic security requirement mandates that a communicating principal must

be able to prove itself. In other words, it should be possible for an entity that

is communicating with a principal to verify the authenticity and integrity of the

principal. XIA, thus, chooses the XID as such that they guarantee the authenticity

and integrity of the communicating principal. For example, the host identifier or the

HID is the secure hash of the host’s public key. The content identifier or the CID is

the secure hash of the content itself.

2.1.3 Fallbacks

In order to support evolvibility, it becomes important to address the issue of how

network entities that do not understand a communication principal type deal with

8



Figure 2.2: Fallbacks

the principal. An analogous example in today’s Internet could be as follows. If

we move to IPv6 Internet, what if an intermediate network does not understand

IPv6 and only understands IPv4? The intermediate nodes should not drop the IPv6

packets. In other words, the network still needs a way to forward packets even if

it does not understand a communication principal. XIA supports this ability via

the notion of fallbacks. Fallbacks allow XIA to specify multiple paths to the same

principal. The entities that do not understand a particular path can take a different

path for communicating with the principal type. All the different paths to the

communication principal are combined into a network layer address that takes the

format of a directed acyclic graph (DAG) as shown in Figure 2.2. The address is

interpreted as follows - forward / route primarily based on CID, but if you don’t

understand CID, route based on IP address.

2.2 Content Principal in XIA

With the content principal users can express interest in content irrespective of its

location. Sending a content request fetches content from anywhere in the network.

The request could go all the way back to the original publisher of the content or

can be served from an in-network cache that holds a copy of the content. The API

for content principal are as shown in Table 2.1. Content principal provides intrinsic

security guarantees by choosing the cryptographic hash of the content as its identifier.
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Function Description
getContent(socket, addr, buffer) Retrieves the content specified by addr

from network; addr contains CID and pos-
sibly a fallback

putContent(socket, content) Registers the content as available. After
making this call, the network knows how
to fetch content.

Table 2.1: API for Content Principal

Thus, all the network devices can verify authenticity of the content objects.

2.3 Conclusion

In this chapter, we studied the eXpressive Internet Architecture. We looked at the

importation features offered by XIA - coexistence of multiple principal types, intrinsic

security and fallbacks. Then we looked at how network entities can use the content

principal to publish and fetch content irrespective of its physical location. This was

the last introductory chapter in the thesis. The following chapters build on to ideas

discussed in these two chapters and are the main contributions of the thesis.
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3

Content Retrieval Infrastructure

3.1 Motivation

Most of the applications today that need to deliver content reliably use TCP as the

transport layer protocol. The motivating example in our case is the world wide web.

TCP relies on communication from end-hosts to provide reliable content delivery.

Relying on end hosts rather than the network for the reliable delivery information

gives TCP the advantage that no explicit network layer feedback is needed to reliably

transport content. This goes in accordance with the philosophy of a dumb network

and smart ends and the end-to-end principle.

However, the rise of information centric networking shifts the focus from hosts

to content. That poses us with the challenge of redesigning reliable transport for

content centric architectures. The solutions that have been proposed, rely on client

applications to fetch individual packets belonging to a object reliably. This approach

of one-way reliability loses on important congestion control information that the

content provider (a router cache or the original publisher) could have received from

the client. An example of such information could be the congestion window size.

We, therefore, take a different approach to solve the problem of reliable trans-
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port of content chunks. We use coexisting content and service principals in XIA to

allow us to apply TCP like congestion control and reliability approach to content

centric networks. The content principal helps in locating the content and the service

principal helps in delivering the content. We show that this approach of delivering

content-over-service does not change the semantics of use and still allows both the

publisher and the client to participate in a reliable content transport session resulting

in a more efficient reliable content transport for content centric architectures.

3.2 Design Goals

As we have seen in the last chapters, XIA does not disregard the fact that the first

class principal the world is moving towards is content. At the same time it allows

for presence of multiple such principals simultaneously. In the new content retrieval

infrastructure we aim to leverage the coexistence of service and content principals.

We aim to solve problem the problem of reliable transport of content for content

centric networks using the coexisting service and content principals.

While solving other problems, we aim to ensure that the benefits expected out of

an information-centric architecture are still preserved. So, ICN features such as on

path caching, content based routing should remain as they are.

Also, we envision that the cache on routers could extend in multiple dimensions.

For example, cache could choose to store content at a remote location rather than

in its local storage. Content eviction policies might change over time. Thus, it is

important that the system we design is extensible in all the ways possible.

To summarize, the goals of new content principal handling are as follows:

• Support Opportunistic Caching.

• Support Reliable Transport for Content Objects.

• Support Extensible.
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Figure 3.1: Old Network Stack for Content Delivery Architecture

3.3 Design Overview

As we have seen in chapter 2, cacheable content is addressed using CIDs. CID

principal puts no limit on the size of the content chunk. Although desirable, this

requirement implies that some applications will need the ability to transmit and

fetch content reliably. How does it affect our design? Lets look at where various

functionalities are implemented in XIAs network stack. The old network stack for

content delivery architecture is outlined in Figure 3.1. Reliable transport service

(streaming sockets) is implemented at transport layer in this stack. In order to

transmit content reliably, we need a way to use reliable transport service. Therefore

in our new design, we implement content delivery infrastructure primarily in an

application while keeping content based routing as it is. The new network stack and

the functionality split is as shown in Figure 3.2.

The fact that caching is moved to an application gives us following advantages:

• Extensibility

• Easy access to reliable transport API

We define a new application level entity called Xcache Daemon(xcached) that
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Figure 3.2: New Network Stack for Content Delivery Architecture

takes the responsibility of caching and serving content chunks. Xcached receives

requests from client applications and translates them into socket calls as shown in

Table 3.2. Xcached also takes care of multiplexing and demultiplexing of content

requests and responses to and from various connected content applications.

3.4 Xcached Architecture

Xcached is the center of all CID (as well as nCID as we will see in the later chap-

ters) operations. So, it is important that it does not become the bottleneck in the

content delivery infrastructure. It essentially means that xcached should not starve

applications, it should process requests fairly and it should be performant. In this

section we will look closely at the xcached daemon - how it has been architected and
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Figure 3.3: Xcached Architecture

what are some of its extensibility characteristics.

Xcached is a mutli-threaded program that follows worker thread pool model in

which the application facing controller puts the arrived requests in a queue and

worker threads dequeue and do the work as and when convenient. Figure 3.3 shows

the various modules in the xcache daemon.

3.4.1 XcacheLib

In order to hide communication details from the application, we have built a library

that exposes the required APIs to the content applications. These APIs are described

in greater details in section 3.7.

3.4.2 The controller

The controller is the application facing front end which takes requests from the

XcacheLib. The communication between the controller and XcacheLib is over UNIX

domain sockets. We use google-protobuf to parse and unparse the requests to and

from the controller. It is possible that applications request for content that is cached

locally. The controller processes such requests in the fast-path. I.e. It sends back the

response to the application quickly. All the other requests which cannot be processed

in the fast path are put in the requests queue. These requests are processed at some
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Job Details No. of threads
Content Pub-
lish / Fetch

Storing content published by appli-
cations or fetching content from a
remote source

Arbitrary

Content Evic-
tion on Time-
out

Content objects that get cached
have a associated time-to-live pe-
riod. This is the time period af-
ter which content object should be-
come unavailable.

One

Opportunistic
Caching

Opportunistic caching of content
chunks by in-network devices

One

Table 3.1: Jobs performed by threads in xcached

time in future by one of threads in the thread pool.

3.4.3 Thread Pool

Xcached thread pool consists of a set of worker threads, number of which can be

configured at xcached startup. The thread pool consists of threads that perform one

of the tasks shown in Table 3.1.

3.4.4 Content Stores

Different content systems have different characteristics: RAM allows fast retrieval of

data but has limited size. Disk is slower than RAM store but can hold a lot more

content. Thus storing content in RAM might be more desirable for use cases that

need only smaller chunks whereas use cases that need to store big content chunks

might prefer to store content on Disk rather than in RAM. In order to support these

varying use cases, Xcached supports multiple different content storage methods. By

default, it supports storing content in RAM, on disk and on a network attached

storage device. Also, it is possible to compile new storage methods with xcached.

Implementing a new storage method is as simple as extending following class and

implementing the member methods.
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class xcache_content_store {

virtual store();

virtual get();

}

3.4.5 Storage Manager

Since xcached has different storage methods, it is possible to organize content ob-

jects across these stores in different ways to serve different use-cases. Possible content

placement policies could be round-robin, popularity based or size based. We imple-

ment a simple content placement policy which places content in RAM store until its

full and then moves subsequent content to the disk store.

3.4.6 Content Eviction

If possible content stores run out of space, content must be evicted to make space for

new incoming content. Content eviction policies govern which content chunks should

be evicted on such an event from a particular content store. The content eviction

policy that Xcache supports is LRU (Least recently used). Just like content stores,

new content eviction policies can be compiled with xcache and associated with the

content stores. Implementing new content store specific content eviction policies is

just as simple as extending and implementing following class and associating it with

a content store.

class xcache_eviction_policy {

virtual store();

virtual get();

virtual remove();

virtual evict();

}
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3.5 Design Details

Xcached has three types of interfaces with the transport layer. In order to understand

these interfaces better let’s take a closer look at three network components that

interact with XcacheD.

3.5.1 Content Server

Xcached acts as a content server on the publisher’s end as well as when the in-

network cache delivers content to the client. On receipt of content requests, the

daemon needs to know what content is being requested. We define a new type of

transport socket called “content server” socket which allows daemon to bind to all

the content connections. This socket allows xcached to know for what content the

request was received. The content server socket needs to do two unusual tasks which

are significantly different from normal server sockets.

Bind(Content *)

Since content server needs to listen to all incoming content request, it needs to bind

to all content addresses that the provider has with it. Thus we need a notion of

Bind(Content *).

AcceptAs(MyAddress)

As the server side socket has been bound to many addresses, when an incoming

request is received, the xcached needs to know for which address the request was

received. In other words, the server needs a way to know what address is the source

address for packets going out of it. Thus we define a new AcceptAs call that tells

xcached for which content the request was received.
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API What xcache does
XputChunk StoreContent(), XaddRoute()
XgetChunk Xconnect(CID Dag), Xrecv()

Table 3.2: API Expansion

3.5.2 Content Client

The main responsibility of client side xcached is to establish a reliable transport

session with a content provider and fetch content reliably. The content provider can

be an in-network cache or it can be the end publisher. So, xcached’s client side

socket “connects” with a content provider and fetches the content. In other words,

xcached’s client socket “connects” with content rather than a “service”.

3.5.3 Opportunistic Caching

The last context in which xcached comes into picture is opportunistic caching. When

content providers serve content to clients over a reliable transport session, in-network

devices need to intercept and cache content packets as they are traveling through

them. The third interface that xcached has with the network allows xcached to sniff

content packets flowing through it. We call this socket a content raw socket.

3.6 End to End Example

We have seen at high level how we moved caching and content serving functionality

to xcached application. In this section we will walk through a detailed end to end

example and see how clients establish a reliable transport session with a publisher

and how intermediate caches cache the packets flowing through them.
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Figure 3.4: CID Dag Publisher

3.6.1 Step 1: XputChunk(Content)

The whole story starts with the publisher putting the content objects in the local

cache (xcached) and publishing routes to these content objects. This lets the network

know that unless cached at a better location, all the incoming requests for this content

should be forwarded to this host. The end publisher publishes the chunk with the

DAG address as shown in Figure 3.4.

3.6.2 Step 2: XgetChunk(CID Dag)

• Client application calls XgetChunk with the desired DAG address as the argu-

ment. This call lets the xcached know that a client application is interested in

fetching content pointed to by the DAG.

• Xcached tries to establish the reliable transport session with one of the many

network entities who can serve the content by calling Xconnect(CID-Dag).

This Xconnect(CID-Dag) call serves two purposes: It acts as a content request

as well the first packet of three-way handshake of the reliable transport session

(SYN).

• Any network device that has the content chunk cached, accepts the GET /

SYN packet and in effect tells xcached that there is a content request and it is

the first packet of the reliable transport session.
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Figure 3.5: SYN Source Address

Figure 3.6: Published Content Chunk Address

• Call to XacceptAs made by xcached then returns with the address of content

that was requested by the client. Calling XacceptAs results in generation of

SYN-ACK. The return of XacceptAs also means that the three-way handshake

was completed by the xcached that provides the content.

3.6.3 Addresses

The SYN packet that xcached on the content provider received, has the source ad-

dress that looks like address in Figure 3.5.

The SID in the source address represents the ephemeral reliable transport end-

point that xcached on client had created. This address acts as a way back to the

client. Content server socket completes the three way handshake by accepting the

connection with source address as in Figure 3.6. Once the connection has been ac-

cepted, content provider serves the content over the established reliable transport

session.
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3.6.4 Opportunistic Caching

The challenge in opportunistically caching the content objects is that the xcached

on the in-network cache is not an active participant in the reliable transport session.

We solve the problem of opportunistic caching by forwarding all the content packets

to xcached and then reassembling the chunk by peeking into transport header. Fol-

lowing are the steps that take place on the intermediate cache when content object

is to be cached.

• While content is being served from the content provider to content client, it

gets caught by the CID raw sockets on Xcached’s running on intermediate

network devices. The CID raw socket forwards all the packets which have the

primary intent as CID to the xcached running.

• Looking at the first packet in the transport session (SYN/ACK), the forwarding

engine needs to know if the content object should be cached or not. The logic

for this policy is implemented in xcached. Based on the policy, xcached takes

a decision and either sends “Yes, cache” or “No, don’t cache” decision to the

forwarding engine

• Packets belonging to all content chunks for which the policy decision is “Yes,

cache” are forwarded to xcached.

• Xcached peeks into the transport header and reassembles a content object.

Once reassembled, now that particular xcached also acts as the content provider

for the chunk.

3.7 API Details

With the movement of caching and content handling to xcache application, we also

redefined the application interfaces for publishing and fetching content over XIA. The
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application is not responsible for establishing the reliable transport session. Xcached

does it on behalf of the application. This simplifies the application design and also

gives the xcached the ability to cache content that was requested by the application.

In this section, we will go over the APIs that XcacheLib exposes to the content

applications and see an example of a sample content publisher as well as a client

application.

• int XcacheHandleInit(XcacheHandle *h) - Creates a connection with xcached

and fills in the opaque structure XcacheHandle. XcacheHandle acts as a con-

text for the rest of the APIs.

• int XcacheHandleDestroy(XcacheHandle *h) - Destroys the the handle cre-

ated by the call XcacheHandleInit. Applications that call XcacheHandleInit

must call XcacheHandleDestroy.

• int XfetchChunk(XcacheHandle *h, void *buf, size t buflen, int flags,

sockaddr x *addr, socklen t addrlen) - This function lets applications fetch

content chunk that has the DAG address addr of length addrlen. The Xcache

context h must be initialized by calling function XcacheHandleInit.

• int XputChunk(XcacheHandle *h, const void *data, size t length,

sockaddr x *addr) - XputChunk allows applications to publish chunks to the

network. A call to XputChunk publishes a chunk which has data pointed to by

data and of length length. The address of the published chunk is returned in

the address addr.

• int XregisterNotif(int event,

void (*func)(XcacheHandle *, int event, sockaddr x *addr, socklen t

addrlen)) - Xcache allows applications to listen for certain “notifications”. Ex-

amples of these notifications include chunk eviction notification, chunk arrival
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notification. A call to XregisterNotif registers a handler for a particular

notification. Applications can either spawn a separate thread for handling

notifications by calling XlaunchNotifThread or they can look for received no-

tifications by checking received data on socket returned by XgetNotifSocket

and calling XprocessNotif if appropriate.

• int XlaunchNotifThread(XcacheHandle *h) - This function launches a no-

tification listener thread. If xcached sends a notification on notification socket,

the function calls registered handlers if appropriate.

• int XgetNotifSocket(XcacheHandle *h) - This function returns the socket

on which xcached sends back the notifications.

• int XprocessNotif(XcacheHandle *h) - If the xcached notifcation socket

has any incoming data, applications can call XprocessNotif to invoke the

registered handlers.

3.8 Sample Applications

In this section, we will see how applications can use above mentioned APIs in their

code. Section 3.8.1 shows a self-explanatory example of a content server applica-

tion. Whereas, section 3.8.2 shows a self-explanatory example of a content client

application.

3.8.1 Content Server Application

int main(void) {

XcacheHandle xcache;

sockaddr_x info;

...

XcacheHandleInit(&xcache);

...
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XputChunk(&xcache, data, datalen, 512, &info);

...

XdetroyChunk(&xcache);

}

3.8.2 Content Client Application

int main(void) {

XcacheHandle xcache;

sockaddr_x info;

...

XcacheHandleInit(&xcache);

...

XfetchChunk(&xcache, buf, 1024, XCF_BLOCK, &info, sizeof(sockaddr_x));

...

XdetroyChunk(&xcache);

}

3.9 Conclusion

In this chapter, we saw how we moved content caching and serving to an application

daemon xcached. In contrast to the old design, we used reliable transport to deliver

content. We then looked at the new API and how we can use it to write content

applications in XIA.
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4

Fetching Named Content in XIA

4.1 Motivation

In order to effectively utilize in-network caches, it is important that the resources in

the web are cacheable. Cacheability of the resources really depends on its reusability.

Static resources (objects images, video chunks) are probably the best candidates for

utilizing in-network storage. But, the majority of web content falls in the other two

categories.

It can be argued that dynamic resources can benefit the least from of in-network

caches. The primary reason being that dynamic resources are generated upon the

request arrival and hence are highly non-reusable. This, clients can thus

But the resources that are of interest to us are the multiform resources that we

saw in chapter 1. Recall that these resources exist in multiple forms at a same time

or at different times. Clients choose a representation that suites their need the best.

They are reusable for the very reason that upon sending the same request multiple

times, they respond with the same content. What can we do to make these multiform

resources cacheable at the same time preserve their multiformity?
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4.1.1 Human Readable Names for Multiform Resources

We have seen that web relies on human readable names for identifying multiform

resources and in general all the web resources. Even though cryptographic identifiers

have inherent security properties, what makes human readable names a preferred

choice?

The first obvious reason is that the names are more understandable. Users es-

tablish trust in human readable Identifiers such as“facebook.com” much easily than

in random cryptic hex string such as “0ABF1866BD7182...”.

The second reason is that multiform resources change their representation. For

example, content associated with the resource identified by “http://www.cnn.com”

changes often. So, as time passes multiform web resources change their representa-

tion. Also, time is not the only dimension along which these resources change their

representation. Another such dimension could be UserAgent. With the advent of

smart-devices, number of platforms from which web resources are accessed has been

increasing like never before. That poses us with the challenge of presenting the same

resource in different forms based on the platform that the user is requesting the

resource from.

CIDs have the disadvantage that an identifier can only point to a particular

representation. It also implies that it is not possible for us to allocate an identifier

for content that we dont know in advance. So, crypto IDs do not support the property

of late binding.

4.2 Locating Content using Human Readable Names

In the last section we saw the reasons why the world wide web identifies and locates

resources by human readable names. Lets see the possible options to locate content

using human readable names in eXpressive Internet Architecture.
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• Keep a DNS like mapping system that maps names to CIDs

• Locate content directly by human readable names

4.2.1 Problems with DNS like mapping system

In this approach, we would need a naming system that maps human readable names

to CIDs. Users first query the naming system to get the CID and then request

the CID. The naming systems could well be established at organizational levels like

today. Although scalable, this approach suffers from following issues.

Size of the mapping system: Firstly, the size of the mappings that the system

needs to maintain is directly proportional to number of cacheable objects that the

publisher has as opposed to number of hosts in todays Internet. It is evident that

number of objects outnumbers number of hosts by orders of magnitude. So, we would

need really huge mapping system.

Number of roundtrips: In order to fetch a CID for a particular name, the web user

would need to make several roundtrips to and from the naming system. Depending

upon the model used by the naming system, the consumer could take from one to

several roundtrips before it can know the CID corresponding to the content name.

Security Issues: Once the consumer receives CID corresponding to a human read-

able name why would the consumer believe that mapping between the human read-

able name and the CID is authentic? Hence, the content retrieval architecture must

address these security issues somewhere. However, that loses the whole point of

having cryptographic identifiers. Remember that one important property of CIDs is

that they are self certifying.

Because of the issues mentioned above, it becomes unwise to use a naming system

for locating content by name. Therefore, we take the second approach of directly

addressing content by human readable identifiers. The following sections describe

the new principal type that we define and address the security concerns raised by
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API Details
XputNamedContent(Buffer,
Name, Certificate, Signa-
ture)

Publishes a named content chunk with the
corresponding signature and the certificate

XgetNamedChunk(Name,
Certificate)

Fetches a name content chunk and veri-
fies the authenticity and integrity using the
public key certificate

Table 4.1: nCID Principal Semantics

human readable names.

4.3 nCID Principal Type

4.3.1 Definition

In order to effectively eliminate a huge naming system and support the multiform

content on the world wide web, we define a new principal type which allows locating

content directly by human readable names. Just like CIDs, the content requested by

the consumer using nCID is retrieved from anywhere in the network. The XID type

nCID is defined as follows:

nCID = hash(Human Readable Name + Publisher’s Public Key Fingerprint)

nCID is thus content with a human readable name that is verified by a publisher.

4.3.2 Semantics

The nCID principal allows users to retrieve content identified by human readable

names from anywhere in the network. Table 4.1 shows the APIs that nCID supports.

Similar to CIDs, sending content request for nCID type using getNamedContent()

initiates a transport session with any in-network cache or the original publisher. This

reliable transport session is then used to deliver content to end consumers.

The publishNamedContent(name, signature, public key fingerprint) call

tells the network that the content identified by a human readable name is available
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with the publisher. It is verified by a private key corresponding to the public key

passed as an argument. Xcache expects that the signature passed an argument is

generated in a certain way (we elaborate upon it in the following section). The public

key fingerprint and the signature is used by in-network devices and the endpoints to

perform security checks.

4.4 Security Issues with Named Content

4.4.1 nCID Security Requirements

XIAs intrinsic security requirement makes it mandatory for the XIA prinicpals to

provide integrity and authenticity for the communication operation. CIDs provide

the integrity and authentication by defining identifiers as the hash of the content so

that when the consumer receives the content and the CID, it has a reason to believe

that the content has not be tampered with and has been received from an authentic

publisher.

We argue that satisfying following four requirements provides exactly these guar-

antees for nCID principal type.

1. Ability to Verify Binding between Name and Content

The consumer and in-network devices should have a reason to believe that the

content and name are tied together. CIDs provide this guarantee inherently.

For nCIDs, we rely on public key infrastructure to provide the guarantees.

2. Ability to Verify Content Integrity

The consumer should have a reason to believe that the content has not been

tampered with.

3. Ability for Caches to Verify All These at Minimum Cost

The in-network caches need to perform these security checks before they can
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cache a copy of the object. Applications can use different trust models. It would

be inefficient for in-network caches to verify authenticity, integrity properties

of the content chunk based on the application specific trust model. So, we need

an application agnostic security model to work with.

4. Protection against Content Poisoning

Since there is no absolute binding between the name and the content, an at-

tacker can claim that certain content can belong to a particular name. Our

security model must prevent such an action.

4.4.2 Security Model

Previous work argues that in order to provide security guarantees it is sufficient

to bind any two pairs between name, content and publisher. We choose to bind

name-content and name-publisher pairs.

In order to understand how our security model functions let us look at some

important chunk headers that nCID chunk contains.

Name-content binding is provided by the digital signature that the publisher

generates at publish time. Name-publisher binding is provided by the nCID itself.

Following equations show how these bindings are created by the publisher.

nCID = hash(Content Name, Publisher’s Public Key Fingerprint)

Signature = Encrpyt with Publisher’s Private Key (Content Name,

Content Data)

As long as the consumer knows about the name of the content and the original

publisher’s public key fingerprint, it can always generate a content request. So, we

expect that some high level entity (such as a TLS connection) delivers these two

parameters to the end consumer. In the next chapter about URLs, we see how

sophisticated URLs for nCID can be used to serve this information.
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Figure 4.1: nCID Content Chunk Structure

nCID intrinsic security checking is a two-step process in contrast to one-step

process in case of CIDs. The entity that needs to verify authenticity and integrity of

the content chunk must first fetch the public key that was used to verify the content.

The content chunk contains a pointer to the public key chunk.

Once the public key has been received, the consumer checks if nCID matches the

hash of name and publishers public key fingerprint. It then decrypts the signature

with the same public key. The decrypted signature is matched against name-content

pair. If both these checks succeed, then consumer can safely believe that content is

authentic and has not been tampered with.

No matter what trust model the application uses, all the in-network devices need

to perform only one public key fetch and the two checks for nCID and signature.

Thus, the time required for verifying security properties is constant. Besides, it

requires at most only one content chunk fetch. This satisfies our third requirement

of verifying security properties at minimum cost.

32



Figure 4.2: Content Poisoning

4.4.3 Protection against Content Poisoning

Content poisoning is an attack in which the attacker claims that a certain malicious

content belongs to certain name that has already been published in the network.

Figure 4.2 shows the motivating example.

In this example, the original publisher facebook.com has published a nCID chunk

named “fb.com/cmu”. Facebook has verified the chunk and put its signature in the

chunk header. Now, an attacker wants to claim that certain spoofed content actually

belongs to the name fb.com/cmu. What possible options he has to fill in signature

and the public key?

• Option 1: Public Key = Facebooks Public Key

If attacker uses facebooks public key itself then he cannot generate the corre-

sponding signature. So, this option is not really possible.

• Option 2: Use my own key

Lets say the attacker uses his own key to generate the signature. In that case,
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even though attacker successfully plants a spoofed signature in the chunk he

breaks the nCID check.

So we have seen that the attacker has no way of successfully filling in the signature

and public key field pairs. Content poisoning is thus not possible in our security

model.

4.5 Conclusion

We defined a new content principal for XIA that allows us to directly address the

content by human readable names. We argued that such a principal best suites

the “multiform web resources”. However, such a content addressing system faces

the issue of content authenticity and content integrity. We defined security models

that address these authenticity and integrity issues to provide us an alternate secure

content principal.
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5

URLs for Content in eXpressive Internet
Architecture

5.1 Universal Resource Locators (URLs)

The resources in the world wide web are identified by Universal Resource Iden-

tifier often acronymed as URIs. URIs allow identifying resources uniquely thus

giving hosts the ability to express interest in specific resources. The most common

form of URIs is Universal Resource Locators or URLs. URLs, in addition to

uniquely identifying a resource also specifies a mechanism to retrieve the resource.

The URLs in general look like the following:

protocol://host/path

The protocol field specifies the scheme that should be used to retrieve a repre-

sentation of the resource. The most popular resource retrieval scheme in the web

is ‘HTTP’. Other possible schemes are ‘FTP’, ‘file’, ‘data’. The host part is the

network location of the resource. It can be an IPv4 address or a domain name that

the DNS can resolve to an IPv4 address. A host can own multiple resources. The

path is the specific location of the resource on the host.

35



Figure 5.1: An example CID DAG address

5.2 URL Design Goal

The goals of URL design for CIDs and nCIDs are two-fold.

Firstly, the web resources refer to other web resources all the time. For example,

the HTML web pages contain URLs of other web resources. In the previous chapters

we have seen that the CIDs can be used better to represent static web resources. On

the other hand, nCIDs are a better fit for multiform resources. Since, in this thesis

we use CIDs and nCIDs to represent web resources, we need a method of pointing

to these web resources.

Secondly, the advantage that nCIDs have over the CIDs is that they are ad-

dressable by human readable names. Hence, constructing nCID URLs is a fairly

understood problem. But the goal of URL design for CIDs is that the constructed

URLs should be able to directly refer to the content avoiding name lookups.

5.3 URLs for CIDs

We propose following format for CID URLs.

cid://serialized-cid-dag

In order to understand the process of DAG serialization, let us take an example of a

CID DAG address as shown in Figure 5.1.

We follow the following process to make a serialized version of the DAG:

36



Figure 5.2: CID DAG Serialization

1. Number all the nodes starting with zero and excluding the source node.

2. List all the nodes in the order they are numbered from zero to maximum.

3. For each node, associate the destination node number for all the outgoing edges

from that node.

4. Prepend the output of the last step with the outgoing edges from the source

node.

This scheme results in an URL for CIDs that looks like this

cid://2,0/AD-B,1/HID-P,2/CID-C
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The URLs that are created by this scheme are highly expressive. You can see that

any DAG can be expressed by this method. That allows us to use protocols other

than CIDs too. For example, we could create an URL for representing a service S as

follows.

sid ://2,0/AD-B,1/HID-P,2/SID-S

These URLs, since they directly address the content, avoid name lookup completely.

With these URLs we can now represent static resources in the web.

5.4 URLs for nCIDs

We could readily use the URL scheme that we discussed in section 5.3. But, the

disadvantage of such an approach is that the URLs created are highly unreadable.

Also, as we see in more detail in the following section, nCIDs are formed using

attributes that define the representation of the content chunks. The goal of URL

design is to include those attributes in the URL. Since nCIDs are directly derived

from human readable names, we define a URL scheme which results in URLs as we

see today and yet avoids the need of name look-ups completely.

5.4.1 Addresses and Instance Addresses

We have seen that nCIDs are most useful for representing the multiform web re-

sources. The peculiar characteristic of multiform resources is that they change their

form based on certain attributes. In essence, all the representations of the same re-

source share the same address but are uniquely identified when the address is coupled

with the attributes. We call the attributes that locate a certain representation of a

resource the instance address.

As a motivating example, let’s take a case of multiform resources identified by URL

http://wikipedia.org/google. It is easy to see that when this web resource is requested
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Figure 5.3: Multiform resource changing its form

from a desktop it takes a certain representation. While the same resource, if requested

from a mobile device, takes a completely different form. So, even though the two

objects are totally different in terms of their content, they do share an address. This

identity is their address. To sum up, address of a multiform resource allows us to

identify a resource and instance address helps us locate the derived representation

of the resource.
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Name Details Mandatory
PubCert DAG Address of the Publisher’s Public Key Certificate Yes
Version Version of the Content Chunk No

UserAgent HTTP UserAgent No

Table 5.1: List of Locators

5.4.2 nCID URL Design

Based on the learning from section 5.4.1, we propose the following format for the

URLs of nCIDs.

ncid://address/locator1=value1&locator2=value2&...

With respect to the motivating example shown in Figure 5.3, the address of the

content is content.facebook.com whereas an locator is UserAgent=Android. Table

5.1 shows the list of possible locators. Our security model enforces us to mandate

either the implicit or the explicit existence of a locator called certificate. The locator

certificate is essentially the pointer to the public key certificate that would be used

to verify authenticity and integrity of the named content chunk.

5.5 Conclusion

In this chapter, we defined URL schemes for CID and nCID type content chunks.

With CID URLs, we provided a way to point to CID chunks while avoiding name

lookups. The nCID URL scheme allows us effectively express a link to a nCID

resource. Separating addresses and locators gives web users the ability to choose

specifically the representation that suites its needs the best.
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6

Conclusion

The old implementation of the content principal did not support reliable transport of

content objects. The ability to reliably deliver content objects is crucial for the World

Wide Web. We thus implemented content principal implementation to an application

called XcacheD. Moving content principal implementation to an application was

not a trivial task. It involved redefining interfaces with the network stack. We

carefully studied possible approaches and implemented the content principal handling

in Xcached application.

In order to fetch content objects directly by human readable names, we defined a

new XIA principal type - nCID. We addressed the authenticity and integrity issues

of the new principal type. The new principal type allowed the clients to avoid name

lookups for fetching content chunks.

We classified the web resources into three categories: static resources, dynamic

resources and multiform resources. XIA’s different communication principals sup-

ported these different web resources. We argued that the static resources can be well

represented with CIDs, the dynamic resources can be well represented with SIDs and

the multiform resources can be well represented with nCIDs.
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In order to effectively reference these various resources, we defined a URL scheme.

We defined a generic URL scheme to map any XIA address to serialized character

string. This scheme allowed us to represent addresses of static and dynamic resources.

We then defined URL format for nCID principal that allowed us to address the

multiform resources.

With the above contributions, we modeled the World Wide Web on eXpressive

Internet Architecture.
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